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In this paper we consider iterates of Markov operators of the form

m

<Pf(x) = l.J(jfm)cp;(x)
;=0

where the cp/s are linearly independent, nonnegative and sum to 1. We define
the evaluation matrix of <P to be <P* = [cp,(i/m)] and prove that the iterates of
the operator converge in the operator norm if and only if the powers of the
evaluation matrix converge. Utilizing results from the theory of Markov chains
we obtain explicit expressions for the limiting operator when it exists. Finally,
we apply these results to Bernstein operators and then to B-spline operators.

1. INTRODUCTION

Let m be a fixed positive integer and consider an (m + I)-dimensional
subspace S C C([O, 1]). Let cPo ,..., cPm be a basis for S and define a linear
operator (Pm : C([O, 1]) -+ S by

(1.1)
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We assume
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m

L if>,(X) - 1,
j~O

if>'(x) )0 ° (1.2)

so that t1>m is a Markov operator.
If S is the space of polynomials of degree at most m and

(1.3)

then t1>m is the Bernstein operator of degree m so that t1>mf is the Bernstein
polynomial for f of degree (at most) m. Now, it is well known that for
fE C([O, 1])

(m ---+ co). (1.4)

Kelisky and Rivlin [9] have considered iterates of the Bernstein operators
and proved that for fixed m andfE C([O, 1]),

where
(k ---+ CX)

Lf(x) = (1 - x)f(O) + xf(l).

(1.5)

(1.6)

Micchelli [12] has also studied the limiting behavior of the Bernstein opera­
tors by employing semigroup methods.

In this paper we consider the iterates of an arbitrary Markov operator of
the form (1.1) and determine necessary and sufficient conditions for the
convergence of the operator (in the operator norm). Our results permit an
explicit determination of the limiting operator when it exists.

As a first application we obtain an alternate proof of (1.5). In fact, it
follows readily from our results that the stronger statement II t1>mk

- L 1100 ---+ °
as k ---+ co, obtains.

Next we apply our results to obtain the limiting behavior of iterates of
certain B-spline operators. B-spline operators and their resulting approxima­
tions are generalizations of the Bernstein polynomial approximations. They
were first introduced by Schoenberg [15] and subsequently studied by
Marsden and Schoenberg [11] and Marsden [10].

Riesenfe1d [13] has incorporated B-spline approximations into the area
of curve and surface design. In this context, parametrized curves consisting
of B-splines are generalizations of the approximations first proposed by
Bezier [1,2] and later discussed by Forrest [7] and Gordon and Riesenfeld
[8].
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2. CONVERGENCE OF THE ITERATES
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The notation employed will be as in Section 1 except that the dependence
upon the fixed value m will be suppressed.

DEFINITION. If $ is given by (1.1) then the evaluation matrix for cP is the
stochastic matrix

(2.1)

For convenience we set

and
~ = [~o, CPI , , CPm]

f = [f(O/m),f(l/m), ,f(m/m)]t.

In the following theorem we reduce the convergence problem of the
iterates of cP to the convergence problem of the powers of the evaluation
matrix (JJ * .

THEOREM 1. In order that there exist a bounded linear operator cpoo on
C ([0, 1]) with

(k -+ (0) (2.2)

it is necessary and sufficient that there exist a matrix cP*00 such that

(k -+ (0). (2.3)
In this case

and moreover cpoo is idempotent.

(2.4)

Proof First we establish the relationship between the iterates of cP and
the powers of $ *; namely,

(k?o 1). (2.5)

For k = 1 this reduces to the definition given in (1.1). Proceeding inductively
we obtain

..... --)..

cpk+lf = $(CPkf) = cpcpkf

= 1$ $Ic-If = 1ep kf
'f' * * 'f' *

and this establishes (2.5).
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Now, assume that (2.3) holds. Define the bounded linear operator iflro on
C([O, 1]) by (2.4). Then by (2.5)

[I iflk+l - iflro liro = sup II[iflk+1 - iflro]f[lro
Ilflb,.:;1

m

< sup II[ifl*k - ifl*ro] f[lro I II4>i liro
IIflb,.:;1 i~O

m

= II ifl*k - ifl*ro liro I II4>i I[ro
i=O

and conseqeuntly (2.2) follows. This completes the proof of the sufficiency
part of the theorem.

Conversely, assume that (2.2) holds. Let j(O < j < m) be fixed but arbitrary.
Denote by jj a continuous function on [0, 1] withjj(ijm) = Sij , for 0 < i <m.
Setting ifl*k = [4>}~)] and using (2.5) we obtain the equations

m

iflk+Y; = I 4>~;) 4>1 .
l~O

Because iflk+1jj~ iflroj, (k ~ 00), it must be that 4>W converges (say to
4>~f») as k ~ 00 for 1= 0,1,... , m. As j was arbitrary we obtain (2.3) with
ifl*ro = [4>~f)].

To show that iflro is idempotent first notice that (2.2) implies iflroifl = iflro.
Using this along with the continuity of iflro it follows that iflro idempotent.
This completes the proof of Theorem 1.

COROLLARY 1. -if II iflk - iflro liro ~ 0 as k ~ 00 then the limiting operator
iflro interpolates to the following points:

(2.6)

where ifl*ro is given by (2.4).

Now that the convergence problem of the iterates of the Markov operator
has been reduced to that of the convergence of the powers of its evaluation
matrix, we can utilize the theory of Markov chains (i.e., stochastic matrices).
The advantage here is that there are results which yield, explicitly, the limiting
matrix. In view of (2.4) this gives an explicit determination of the limiting
operator.
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3. A1'PLICATIONS
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As a first application of our results we consider the case where S is the
space of polynomials of degree at most m and the f/;/s are the Bernstein
basis given by (1.3). Then $ is the Bernstein operator of degree m. That is

(3.1)

the evaluation matrix for $ is

(3.2)

In this case the stochastic matrix $ * has two irreducible closed sets of states;
namely, C1 = {O} and C2 = {m}. All other states are transient. Clearly, the
period for both C] and C2 equals 1 and consequently $*k converges.

Since,
m-l

i/m = f/;mCi/m) + L f/;ii/m)(j/m)
j~l

it follows that (see Feller [6]) as k --+ co, $ *k --+ (j) *00 where,

o 1

1 0
m - 1

0
m

tp*oo =

1
0

m
0 0

o
o

o
1
m

m

By Theorem 1 we can conclude that II tpk - tpoo 11--+ co, as k --+ co, where

---+
According to Corollary l, $00 interpolates to the points tpooj = $ '"oof. In
other words, for 0 :'(; i :'(; m,

$oof(i/m) = (1 - (i/m»)f(O) + (i/m)f(l).

It follows that tpoo = L where L is given by (1.6). This fact includes the result
(1.5) of Kelisky and Riv1in (1967) as a special case.
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THEOREM 2. Let S denote the space of polynomials of degree at most m
and ([> : C([O, 1]) -+ S the Bernstein operator of degree m given by (3.1). Then

where
(k -+ 00)

Lf(x) = (l - x) f(O) + xf(l).

(3.3)

(3.4)

For our second application we consider B-splines. For j = 2,... , m - 2,
define

-l. .(x) = --±- G [x. j - 2 j - 1 i j + 1 j + 2]
~ m 'm' m 'm' m ' m

(3.5)

where G(x, y) = (y - x)~ and the square bracket notation denotes the
fourth divided difference of G as a function of y. These functions are the
cubic B-splines first introduced by Schoenberg and Curry and Schoenberg [4]
and later discussed in a compuational context by deBoor [5] and Cox [3].
They have the properties that f/Jj ~ 0, the support of f/Jj is contained in
[(j - 2)jm, (j + 2)jm] and L::;:-;2 f/J;(x) = 1 for x E [3jm, (m - 3)jm].

Our resulting Markov operator is different than the operator considered
by Schoenberg in that we augment the functions of (3.5) with the four
functions

f/Jo(x) = m3 [ex};Jx) - f:lx)]

f/Jl(X) = m3
[-ex.h(x) + 3f3(x) + (lj6)«3jm) - x)~] (3.6)

f/Jm-l(X) = m3[-f3.h(1 - x) + 3fll - x) + (1j6)«(3 - m)jm) + x)~]

f/Jm(x) = m3 [f3.h(1 - x) - f2(1 - x)]

where Ij3 ;:(; ex, f3 ;:(; 1, and for i = 1, 2, 3,

h(x) = (1j4)[24
-

i«ljm) - x)~ - «2jm) - x)~]. (3.7)

The Markov operator obtained satisfies the conditions ([>f(O) = f(O) and
([>f(1) = f(I). This property is also shared by the Bernstein operators as
defined above.

In addition the parameters ex and f3 are included so as to correspond to end
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conditions for these spline functions. They are used in order to affect the
derivatives of the spline <Pfat the end points. In fact, we have

<PI'(O) = 3am[J(1lm) - f(O)]

<P1'(1) = 3,8m[J(l) - f«m - 1)lm)].

THEOREM 3. For 113 :( a, ,8 ~ 1 the space Q spanned by 0/0' 0/1"'" o/m
defined in (3.5) and (3.6) is ofdimension m + 1 and is equivalent to the space S
consisting ofall functions s such that

(i) s E YJ3 on [(i - 1)lm, ilm], i = 1,2,... , m

(ii) s E C2([0, 1])

(iii) 2s'(0) + &s'(1lm) = 3&m[s(llm) - s(O)]
2s'(1) + ~s'«m - 1)lm) = 3~m[s(l) - seem - 1)/m)]

where & = 4al(a + 1) and ~ = 4,81(,8 + 1).

Proof In view of (i) we know that on [ilm, (i + 1)lm],

sex) = g(i + 1 - mx)[s((i + 1)lm) - sCilm) - ms'Olm)]

- g(mx - i)[s((i + 1)lm) - sCilm) - ms'((i + 1)/m)]

+ s(ilm)(i + 1 - mx) + s«(i + 1)lm)(mx - i)

where g(x) = x 3 - x2, Imposing the conditions of (ii) we find that for
i = 1,... , m - 1,

s'«i - l)lm) 4s'(ilm) + s'«i + 1)lm) = 3m[s«(i + 1)/m) - s((i - 1)lm)].

If we now incorporate (iii) then it follows that

2 & 0 0

~l
,'(0) 1

1 4 1 0 s'(1lm)
0 1 4 0 s'(2!m)

=3m

0 0 0 4 ~J "«m: 1)/m)J
0 0 0 ~ s'(1)

&[s(llm) - s(O)]
s(2Im) - s(O)

s(l) - seem - 2)lm)
~[s(l) - seem - l)lm)]

(3.8)

Now, the coefficient matrix of (3.8) is diagonally dominant for 1/3 ~ ex,
,8 :( 1. Moreover, for 1/3 ~ a, ,8 < 1 it is strictly diagonally dominant. In
the case where a = 1 or,8 = 1 it is not strictly diagonally dominant, although
at most two elementary column operations will make it so. Consequently,
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we deduce that in all cases the s'(ijm) are uniquely determined by the s(ijm),
i = 0, 1,..., m and hence so is s.

Next, using the facts that rPo(O) = 1, rPo(1jm) = (1 - ex)j4, rPo'(O) = -3exm,
rPo'(1jm) = 3m(ex - l)j4, rPlO) = 0, rPl(ljm) = (7 + 3cx)jI2, rPl'(O) = 3exm,
rPl'(ljm) = m(1 - 3cx)j4 and analogous properties for rPm-l and rPm it can be
verified that rPi , i = 0,..., m satisfy (iii). Hence it is clear that Q C S.

In order to show that each s E S can be written as s = LCXirPi it is only
necessary to observe that the evaluation matrix for the rP/s:

o
3ex + 7

12
1
6

o 0
1 0
6
4 1
6 6

o
o

o

o
o

o

o
o

o 1
(3.9)

o

o
o

o

o
o

o 0

o 0

o 0

4 1
6 6
1 3[3 + 7
6 -U-
o 0

o
3 - 3[3

12
1

is strictly diagonally dominant. This completes the proof of Theorem 3.
Now, by Theorem 1, in order to determine the limiting behavior of the

iterates of (]J it is only necessary to analyze the asymptotic behavior of the
powers of the evaluation matrix (]J* given in (3.9). In order to accomplish this
we consider two separate cases.

Case 1. ex = [3 = 1. In this case the stochastic matrix (]J* consists of
three irreducible closed classes; namely, C1 = {O}, C2 = {l, 2, ... , m - I},
Cs = {m}. The class C2 has a matrix which is doubly stochastic and it now
follows that as k -+ 00, (]J/' -+ (]J*oo where

1 1
m-l m-l

o 0

1
m-l

o
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Using Theorem 1 we know that !I t[Jk - t[J00 lIoo -+ 0, as k -+ 00, where

By Corollary 1, t[J00 interpolates to the points t[J*00 f and hence

329

m-l

(Pooj(i/m) = (l/(m - I» L: jU/m);
j~1

l~i~m-l

t[Jooj(O) = j(O) and t[JOOj(l) = j(1).

Thus, in contrast to the Bernstein case, the limiting operator does not, in
general, takefto the line segment joining (0,j(0» and (1,j(l».

THEOREM 4. Let S denote the vector space of B-splines with basis given by
(3.5)-(3.7). Assume that ex = 13 = 1. Define

Kf(x) = [f(0) - Af] ~o(x) + [f(l) - An ~rn(x) -+- Af (3.10)

where
m-l

Af = (l/(m - 1» L: j(j/m).
,~1

(3.11)

Then,
II (pk - K 1100 -+ 0 (k -+ 00). (3.12)

Case 2. ex =1= 1 or 13 =F 1. In this case t[J* has two irreducible closed
classes; namely, C1 = {O} and C2 = {m}. Results on tridiagonal stochastic
matrices along with some computations show that, as k -+ 00,

1 0 0
a1 0 0

t[J k* -+

am- 1 0 0
0 0 0

o 0
o 1 - a1

o 1 - am- 1

o 1

where

(l - ex)[3(1 - f3)(m - 1 - i) + 2]
at = 2(1 - 13) + 3(1 - ex)(1 - f3)(m - 2) + 2(1 - ex) (3.13)

for 1 :'( i :'( m - 1.
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Consequently, by Theorem 1, f/Jk converges and moreover by Corollary 1,

f/JOOf(i/m) = a;j(O) + (1 - ai)f(l); 1 ~ i ~ m - 1

f/Joof(O) = f(O) and f/Joof(1) = f(1).

THEOREM 5. Let S denote the vector space ofB-splines with basis given by
(3.5)-(3.7). Assume that either ex i= 1 or f3 i= 1. Define

m-l

+ L: [ad(O) + (1 - ai)f(l)] r/>ix)
i=l

where ai is given by (3.13). Then,

(3.14)

(k --+ (0). (3.15)

A necessary and sufficient condition for Krx,fJ = L is that ex = f3 = 1/3.
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